
Presented by Mike Roberto to Aerospace Corp

1

2

Lets examine difficult and sometimes frustrating problems that are common-place for

software developers, but that can easily be improved or aided through the use of source software developers, but that can easily be improved or aided through the use of source

code control.

When most people think of source code control, they typically think of group

development and large, team-based efforts. The fact is that even single developers

working on small projects can benefit greatly from the use of SCC for many reasons.

In the example shown above, consider an application where a problem that was

introduced goes un-detected and un-checked through several iterations of the software.

If it’s a simple oversight it may be trivial to fix; however, for large projects, it can be

difficult to isolate the source of a problem and may require stepping back through

changes to see what caused it, when it was introduced, and who was responsible for the

changes.

If you’re developing without source code control, the only way to track older revisions of

the code is to follow the ‘stash-on-the-shelf’ method. This can be accomplished a

number of ways, either through zipping files up and renaming them, or storing them in

different folder with a label that reflects which version they are. None of these methods

are efficient or easy to follow, and almost all of these will lead to cross-links where you

don’t know which version of which dependency you’re using. If you’re not using source

code control, it’s more likely that you don’t even have access to older versions and

you’re stuck trying to track down the problem on your own.

On the other hand, if you have source code control, you automatically have access to old

versions of code and can either restore individual files or roll everything back to a prior

version to examine behavior. Additionally, you can actually perform graphical diff to see

exactly what has been changed between versions.

In addition to helping track down changes, this is also extremely valuable when testing

3

4

Another common challenge stems from team-based development. The illustration at

the bottom is an example of the development process for a single application when two the bottom is an example of the development process for a single application when two

developers are working on it.

Joe is the original developer of the application, but at a certain point he apparently

decides to enlist the help of a colleague, Jack, to work on another section of the same

application. For many, you can probably relate to the practice of e-mailing a friend some

code, or perhaps exchanging it across a shared network drive – this scenario is very

similar.

Note that the x’s indicate where changes are being made. While Joe and Jack are

working on separate parts of the application, it may become necessary for one or both

of them to modify code that the other person is currently using.

If Joe is to make a change to a dependency Jack uses, moving his files back over could

quickly lead to confusion, cause unexpected behavior, or cause problems that are subtle

and therefore Jack is not immediately aware of.

If they are lucky enough to be aware of changes, the red circles indicate moments in

time where they would have to invest in combining these changes. For a large body of

code, this could be a long and arduous process. It also assumes that careful

consideration was given to architecture, code interfaces, and the design of the code

before attempting to have multiple people working in the source code.

While this may work for some, there is a lot of room for something to go wrong or

unnoticed, and at the very least, Joe and Jack will need to be prepared to spend a

significant amount of time manually combining changes – a process which is also error

prone and can often cause more problems than it solves.

If instead, Joe and Jack make use of a source code control provider, a lot of their

5

6

7

8

9

This is an illustration of how source code control improved the development process, in particular, for team-based projects. Instead of just copying
code, developers now use source code control to check it out. This is effectively a developer’s method for information a higher authority (in this case,
the SCC provider) that they have an intent to modify the source code.the SCC provider) that they have an intent to modify the source code.

At this point, the behavior and limitations of the SCC interface are setup at the discretion of an administrator. Some may choose, for example, to lock
the code when someone has indicated they choose to modify. Others may allow multiple users to have it checked out simultaneously.

If it becomes necessary to combine changes made by developers to the same piece of code, SCC can help with merging by allowing the two copies of
the file to exist in the repository. Additionally, merge is available via the command line, so the automated LVMerge functionality can be invoked in the
same manner as many text based merge applications.

10

11

12

13

14

15

16

17

Large applications typically entail the use of more than one developer.

This poses a challenge in any programming language. This poses a challenge in any programming language.

Setup concrete example. Developer A does ___, Developer B does ____

Consider what happens if two developers modify the same file at the

same time or if they make a change to a piece of code that affects code

another developer is working on.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The project originally came out in LabVIEW 8, but we’ve made a lot of changes as

a result of customer feedback in LabVIEW 8.5a result of customer feedback in LabVIEW 8.5

“So if you haven’t looked lately, look again”

The Project Explorer was introduced in LabVIEW 8.x to address many of

the challenges mentioned on the previous slide.

Review benefits on slide

32

33

34

35

36

Note: this is not an exhaustive list, rather it is a way to demonstrate how some common
configuration management tasks are performed in LabVIEW. configuration management tasks are performed in LabVIEW.

1. System Level View – The project explorer in LabVIEW provides developers a system
level view of all their resources, including source code, any affiliated files or
documentation and even hardware resources, including different platform targets
such as RT or FPGA

2. Track Changes – You can see in this screen shot how LabVIEW can actually indicate
exactly what aspects of a block diagram or front panel have been changed or
modified. This is made possible thanks to graphical differencing

3. Integration with SCC – The ability to integrate with SCC from within LabVIEW is
advantageous for developers because they can see the current status of files and
access generic SCC functionality without leaving LabVIEW

4. Merge Graphical Code – an important tool for group development requires the
ability to combine changes made by multiple developers. This is now possible in
LabVIEW 8.5

5. Manage Files and Links – there are many tools in LabVIEW that have been
introduced to address common challenges regarding file management. Moving or
renaming files can break links or even cause incorrect links to dependencies on disk.
LabVIEW actually allows you to perform these file operations from within the Project
in order to preserve correct links and avoid potential cross-link scenarios.

6. View Revision History – when integration with SCC is turned on you can view all the
revisions that have been submitted and stored in the SCC repository. You can even
right click on the particular revision and select ‘sync to this revision,’ which pulls
down that version of the file. This view also shows and commonts or information
about the file from the time when it was checked in.

37

This is the questions slide – keep this up to encourage them all to write down the URL at

the top of the screenthe top of the screen

38

The content provided in this session is intended to help attendees understand how to

best organize the various components of their application such that development best organize the various components of their application such that development

practices will scale for large numbers of VIs and numerous developers. In the process,

we will discuss the proper techniques for using NI tools and in particular, the Project

Explorer

The attendee should walk away from this session with a clear understanding of how they

will achieve these goals using the recommendations you provide

39

Software engineering typically refers to a regimented and procedural methodology for
developing software. As software has gotten more complex and team sizes have grown, the developing software. As software has gotten more complex and team sizes have grown, the
software engineering process model has evolved to encourage efficient development that
ensures quality and meets the expectations of the end-user.

A process model prescribes specific phases and tasks to accomplish during the development
process. While there are many representations of the software engineering ‘process,’ including
the waterfall model, the spiral process model, or more contemporary models such as agile or XP
(extreme programming) models, perhaps one of the most common and rigorous models is
shown in this diagram: the ‘v-model.’

If you look closely at this diagram you’ll notice that it begins with the defining of requirements
for the product. These are often high level and are often developed through discussion with the
customer or end-user.

One thing to realize is that the level of criticality directly impacts how granular you have to be in
this process. You may not need to spend any formal time architecting your application or the
specific modules of code, but these are typically very important for large, complex systems.

There are several SEP models, such as Waterfall, Spiral and Agile, but they all share common
ground in terms of having these various phases and tasks that have to be completed. Many
companies today are leaning more towards increasingly agile methods. Basically, this means that
for many it’s unrealistic to abide by a waterfall method, in which you work on a particular phase,
then agree that you’re done and move on. In reality, complex applications require a lot of back
and forth between these different phases. For example, something in the prototype stage
doesn’t work as expected and therefore require a new definition for how a particular part of the
application will operate, thereby impacting requirements documentation and other components
such as the test framework. We’ll look at how to address some of these common challenges in
just a few slides..

40

This diagram is a slightly different and slightly simpler way of viewing this process. It
reflects what is typically referred to as the waterfall method of development. While reflects what is typically referred to as the waterfall method of development. While
great in principle, most software engineers accept that the waterfall method is
impractical and that reality requires significant overlap between these various phases.
In other words, it’s almost impossible to avoid changes to requirements later in
development. The key is to have tools and practices to mitigate the risks caused by
these last minute changes and to understand how these changes will impact other
aspects of your application.

For the rest of this presentation we’re going to be looking at these different phases of
development and examining what some of the more common challenges are and how
to address them when developing applications with LabVIEW. For those of you who
come from backgrounds where you were using a different language, you probably have
been through this process before. It’s important to realize that the process and many of
the methodologies are the same, but that we have tools available that are specific to
graphical development in LabVIEW.

LabVIEW is great for rapid prototyping, and it’s easy to get started. Consequently it’s
easy for people to get off on the wrong foot, jump directly into development and skip
some of the initial phases such as requirements gathering and application architecture.

It’s important to note that configuration management is shown as a part of the entire
process. This refers to tools for managing software and is also often referred to as
source code control (SCC). We’re going to begin by looking at SCM and examining some
tools and how they can best be used with LabVIEW.

41

Defining and Organizing an Defining and Organizing an
Application
Best Practices for Using the Project
Explorer

Managing Files
Project Tools
Target Management
Deploying Applications

Configuration Management
Guidelines

Source Code Control Integration
Group Development Practices

Frequently Asked Questions

42

LabVIEW applications are traditionally small and often intended for use as a rapid

prototype or a simple program where the developer is the user; however, we’re seeing prototype or a simple program where the developer is the user; however, we’re seeing

an increasing number of large application being developed in LabVIEW that consist of

hundreds if not thousands of VIs and involve multiple developers. In order to ensure

success with these applications it is critical to give proper consideration to how files will

be organized in your application in order to help you and other developers locate and

access application components.

43

Defining a LabVIEW Application
LabVIEW is often regarded as a tool for rapidly prototyping small applications or automated test applications, many of
which are fairly simple applications that rely upon a small number of VIs. However, the complexity and scope of
LabVIEW is often regarded as a tool for rapidly prototyping small applications or automated test applications, many of
which are fairly simple applications that rely upon a small number of VIs. However, the complexity and scope of
applications built in LabVIEW is constantly increasing, which requires more code, more complex code, and various
other resources aside from VIs. For those of you familiar with LabVIEW development prior to LabVIEW 8, you’re likely
to agree that it becomes difficult to manage your VIs if your application takes on a larger size. Large applications may
even frequently consist of smaller components which are in and of themselves ‘applications.’ We’ll discuss this more
in a moment. The fact is that as the size and complexity of applications increases, developers need more
sophisticated methods and practices for managing application development.
Come to a consensus with the audience on the definition of an ‘application.’

Though the term may seem obvious, point out that it encompasses much more than just the code. Most
commonly, applications refer to:

Source code
Specifications and Documentation
Configuration files
Data/Log files
Shared libraries or code modules from other programming languages
Hardware settings

It should be noted that these components are generally consistent across programming languages – they
are by no means unique to LabVIEW.
The bottom line is that though the items I listed are all common components, it is up to the developer (or
team of developers) to identify the pieces of an application.

We’re going to discuss how to manage these larger applications and their various components using the
latest tools and recommended practices for use specifically with LabVIEW.
We’ll start be examining how to organize application components on disk

44

What problem is this information trying to solve?
If you’re developing an application in LabVIEW, you have multiple components that you need to be able to keep track of
Note: Most people are going to be familiar with the pain of organizing their application, so relate to the problems they’ve hadNote: Most people are going to be familiar with the pain of organizing their application, so relate to the problems they’ve had

The solution presented here
Ideally, you want a set of files that is well organized so that you have a clear understanding of where to find certain components and
where to store new components.
This is the guidelines we follow at National Instruments, but how you do things like group files is often up to the developer and
depends upon what the application is.

Organizing Files on Disk
Emphasize the importance of having a logical structure implemented on disk
Discuss criteria (methods) for organizing files on disk
Recommend practices for organization through a demonstration

In this presentation we’re going to discuss and explore the practices that we recommend when managing your
application; however, many of you may abide by other conventions or practices. We’re going to highlight and explain
what our developers do internally at National Instruments

Create a directory for all the VIs for one application and give it a meaningful name. Save the main VIs in this directory and
the subVIs in a subdirectory. If the subVIs have subVIs, continue the directory hierarchy downward.

Organize the VIs in the file system to reflect the hierarchical nature of the software. Make top-level VIs directly
accessible. Place subVIs in subdirectories and group them to reflect any modular components you have designed
according to function, such as instrument drivers, configuration utilities, and file I/O drivers.

When naming VIs, VI libraries, and directories, avoid using characters that are not accepted by all file systems, such as
slash (/), backslash (\), colon (:), and tilde (~). Avoid creating files with the same name anywhere within the hierarchy. If
you have a VI with a specific name in memory and you attempt to load another VI that references a subVI of the same
name, the VI links to the VI in memory. If you make backup copies of files, be sure to save them into a directory outside
the normal search hierarchy so that LabVIEW does not mistakenly load them into memory when you open development
VIs. These are frequent causes of cross-linking. LabVIEW provides tools to resolve these scenarios if they occur, which
we will discuss later in this presentation.

45

46

47

Everyone’s used the windows calculator…
This slide is just a chance to introduce the application we’ll be using for the demonstrations in this This slide is just a chance to introduce the application we’ll be using for the demonstrations in this
presentation. It’s a basic four function calculator written in LabVIEW that is very similar to the Windows
Calculator.

48

Remind developers familiar with LabVIEW that prior to 8.0 the only
method for organizing files was through the use of the Operating System method for organizing files was through the use of the Operating System
file browser (ie: Windows Explorer).

Relate to experience prior to LabVIEW 8
What did you use to manage your application before the Project? All you
really had was the operating system file browser, such as Windows
Explorer.
Though this application is fairly small, we can already see that we have a
fair amount of resources we need to keep track of. Imagine a much larger
application or the complexities involved with keeping track of code that is
shared across applications or used for group development.
These concerns become compounded if you’re trying to manage multiple
developers on the same application

LabVIEW 8.0 introduced a new tool that some of you may be familiar with
to help address these concerns and help manage and organize application
components….

49

The project originally came out in LabVIEW 8, but we’ve made a lot of changes as

a result of customer feedback in LabVIEW 8.5a result of customer feedback in LabVIEW 8.5

-Customize layout on disk to suit needs

-Should closely resemble hierarchy on disk

50

These are the basic components in the Project Explorer

Project file (lvproj) is listed at the top of the Project Explorer

Underneath, we see all hardware targets we’re using

Every hardware target has build specifications and dependencies

*Dependencies was changed in LabVIEW 8.5 to separate your files from the contents of

vilib

51

52

The Files View is also new in LabVIEW 8.5. This is an important feature for organizing files on
disk and for performing file operations. Copy, rename and delete files from this view in order to

53

disk and for performing file operations. Copy, rename and delete files from this view in order to
avoid breaking links between files

Files view provides a hierarchy similar to what you will see in the Project Explorer; however, it
filters out files that are not in your project

53

54

We use folders to organize and bucket files in the Project Explorer.
LabVIEW 8.5 introduces a new folder type, called Autopopulating foldersLabVIEW 8.5 introduces a new folder type, called Autopopulating folders

The files are readily available and that you can get at them and access them easily. In addition, use of the project
provides you flexibility that you don’t have otherwise.

Even though it’s more important to talk about these folders while actually using this project, this slide may prove
useful in showing the distinction because it’s an enlarged screenshot (these icons may be hard to see for your
audience otherwise)

Auto-Populating Folders
For most users, it is desirable that the organization of source files within the Project reflect the
organization of files on disk. To accomplish this, you can use auto-populating Project folders.
Auto-populating folders synchronize their contents within LabVIEW to the contents to specified
directories on disk, ensuring that modifications to the hierarchy need only be made once in order
to appear in both locations.
If a project library is stored within a directory that is synchronized to an auto-populating folder
the project library and the files it refers to will appear in the Project Explorer. This is not
recommended since these libraries can have implicit representations to files and folders that are
not within the same folder.

Virtual Folders
Virtual folders are logical folders that make it possible for you to display and organize files in the
Project Explorer without regard for organization on disk; virtual folders do not necessarily reflect
the organization of file directories on disk. You can import a folder from disk into the Project as a
virtual folder, but it will effectively be a snapshot of the folder at the time you imported it.
Virtual folders enable you to completely customize the organization of files within the Items view
of the Project Explorer without rearranging files on disk, which avoids disrupting other
applications that share the code or creating cross-linked files.
However, note that if the organization of files within the Project Explorer differs greatly from the
physical layout on disk, you may have a difficult time updating and maintaining the application.

55

56

Cross-linking is when a VI in memory references a different subVI than the one it was last saved

with, one that the developer didn’t intend to reference. Cross-linking occurs because there is a with, one that the developer didn’t intend to reference. Cross-linking occurs because there is a

difference between VIs in memory and VIs on disk. Items in memory are unique by name, but

multiple VIs of the same name can exist on disk.

Therefore, when you try to load a VI off disk, LabVIEW first checks to see if a VI in memory has

that name, and prompts you to use the one in memory or Discard it and use the one from disk.

But for subVIs, LabVIEW will not prompt and will instead link to the VIs already in memory and

present a Warnings dialog informing you that it loaded VIs from unexpected locations.

Cross-linking is when a VI in memory references a different subVI than the one it was last saved

with, one that the developer didn’t intend to reference.

Cross-linking occurs because there is a difference between VIs in memory and VIs on disk.

Items in memory are unique by name, but multiple VIs of the same name can exist on disk.

Therefore, when you try to load a VI off disk, LabVIEW first checks to see if a VI in memory has

that name, and prompts you to use the one in memory or Discard it and use the one from disk.

But for subVIs, LabVIEW will not prompt and will instead link to the VIs already in memory and

present a Warnings dialog informing you that it loaded VIs from unexpected locations.

57

58

59

60

61

62

63

