TOM ESSENPREIS — KB9ENS

MAGNETIC LOOP ANTENNA

OVERVIEW

- Why?
- Circuit
- Calculator
- Hands On
- Demo

WHY?

- Acquisitions: (Pick two)
 - Cost/Schedule/Performance
- Antennas: (Pick two)
 - Small Size (relative to wavelength)
 - Efficiency
 - Broadband
- Noise rejection?

CIRCUIT:

CALCULATOR

ARRL Antenna manual

AA5TB Calculator

Small Loop Equations for a Copper Loop

(circular loop assumed, results may vary with other shapes)

Radiation Resistance, Ohms: $RR = (3.38 \times 10^{-8})(f^2 A)^2$

Loss Resistance, Ohms: RL = $(9.96 \times 10^{-4})(\sqrt{f})(5/d)$

Efficiency: n = RR/(RR+RL)

Inductance, Henrys: L = $(1.9 \times 10^{-8}) \times [7.353 \log 10(965/\pi d) - 6.386]$

Inductive Reactance, Ohms: $XL = 2\pi f(L \times 10^{\circ}6)$

Tuning Capacitor, Farads: $CT = 1/2\pi f(XL \times 10^{\circ}6)$

Quality Factor: Q = $(f \times 10 \uparrow 6)/\Delta f = XL/2(RR + RL)$

Bandwidth, Hertz: $\Delta f = (f \times 10 \uparrow 6)/Q = [(f \cdot 1 - f \cdot 2) \times 10 \uparrow 6]$

Distributed Capacity: pF: CD = 0.825

Capacitor Potential, Volts: VC = √(PXLQ)

Capacitor Voltage Rating: 75,000V/in

where

f = operating frequency, MHz

A = area of loop, square feet

S = conductor length, feet

d = conductor diameter, inches

n = decimal value; dB = 10 log10n

P = transmitter power, Watts

Small Magnetic Loop Antenna Calculator ver. 1.22a

D

Н

F

G

by Steve Yates
AA5TB
aa5tb@yahoo.com
Updated April 28, 2009

Input the following parameters:

В

Α

31 Notes:

Design Frequency =	14.200	MHz	
Loop Diameter =	3.500	feet	1.067 m
Conductor Diameter =	0.750	inches	19.050 mm
Added Loss Resistance =	0.000	milliohms	
RF Power =	10.000	Watts	

Calculated Results:

Bandwidth =	21.181	kHz (-3 dB points)	
Efficiency =	69.806	%	- 1.561 dB
Loop Area =	9.621 f	ft²	0.894 m ²
Radiation Resistance =	127.210 :	mΩ	
Total Loss Resistance =	55.025	mΩ	
Loop Circumference =	10.996 f	ft	3.351 m
Wavelength Percentage =	15.874	% λ	
Loop Inductance =	2.739	μН	
Distributed Capacitance =	9.016	ρF	
Q (Quality Factor) =	670.412		
Tuning Capacitor =	45.870	pF	
Capacitor Voltage =	1279.891 \	V	
Minimum Plate Spacing =	17.065 r	mils (1/1000 in)	0.433 mm

- To truly be considered a small loop, the Loop Circumference should be less then 10 % λ. Larger loops will have greater efficiency but smaller nulls.
- To see the effects of bad joints, etc., input realistic values into the Added Loss Resistance box.
- The sheets are protected to prevent the user that is unfamiliar with Excel from accidentally corrupting formulas. To unlock the sheets use the password aa5tb.
- 4. This application is free to use as you wish. If you modify it and pass it on all that I ask is that you give me credit for my part of the work. Thanks!

Μ

Ν

Q

K

HANDS ON

- Volunteers:
 - Analyzer
 - Capacitor
- Exercise
 - 1. Bound the performance
 - 2. Tune a specific frequency
 - 3. Attach transceiver and tune for sound
 - 4. Test!

QUESTIONS

